大家好,今天小编关注到一个比较有意思的话题,就是关于2022电脑最使用的脚本的问题,于是小编就整理了2个相关介绍2022电脑最使用的脚本的解答,让我们一起看看吧。
想自学大数据,不知道从哪里学起,有什么书籍和学习路线推荐么?
谢邀!笔者刚签约大数据挖掘工程师岗位,也是在研究生阶段才转为大数据方向。大数据目前正火热,很多同学想要转入,但学习路线对于自学的人来讲因人而异。
拿自身举例,笔者之前是Python数据分析出生,编程能力一般,因此在这个基础上先学习linux基本操作命令,安装ubuntu双系统并进一步安装Hadoop和Spark组件,在此基础上利用Pyspark操作Spark大数据框架进行学习。可以推荐如下书籍:
《Pyspark实战指南》
而要完全进入大数据领域还不够,因为大数据框架比较侧重开发,所以需要有scala语言功底(scala语言是Spark的原生语言),而scala语言跟J***A关联性很强且完全兼容,所以如果有一定J***A基础的话完全可以从scala入手,推荐的书籍如下:
《Spark编程基础(scala版)》
视频教程强烈推荐林子雨老师在MOOC慕课上的国家精品免费课程,由浅入深,非常容易上手。
学习大数据需要掌握多种技能和工具,包括数据处理、数据存储、数据分析、数据可视化等方面的知识。以下是一些书籍和学习路线的推荐,供您参考:
- 《大数据时代》:这本书是大数据领域的经典著作之一,作者维克托·迈尔-舍恩伯格(Viktor Mayer-Schönberger)和肯尼斯·库克罗(Arnold Kenneth Cukier)详细介绍了大数据的概念、应用、挑战和机遇等方面的知识。
- 《大数据处理与分析》:这本书介绍了大数据处理和分析的基本概念、技术和工具,包括Hadoop、Spark、MapReduce等。
- 《数据可视化实战》:这本书介绍了数据可视化的概念、原理和实践技巧,包括数据图表、交互式可视化等方面的知识。
- 《Python数据分析实战》:这本书介绍了使用Python进行数据分析和处理的基本技术和工具,包括NumPy、Pandas等。
- 《数据科学家的工具箱》:这本书介绍了数据科学家需要使用的各种工具和技术,包括编程语言、数据处理和分析工具、机器学习算法等。
学习大数据的路线可以分为以下几个阶段:
- 学习编程基础:了解编程语言的基本概念和语法,掌握基本的编程技巧和工具。
- 学习数据处理和分析技术:了解大数据处理和分析的基本概念、技术和工具,包括Hadoop、Spark、MapReduce等。
- 学习数据可视化技术:了解数据可视化的概念、原理和实践技巧,包括数据图表、交互式可视化等方面的知识。
- 学习机器学习和深度学习技术:掌握机器学习和深度学习的基本概念、原理和应用技巧,包括算法、模型、框架等。
- 实践项目:通过实践项目来巩固和应用所学知识,提高实际工作能力。
以上是大数据学习的一些基本路线和参考书籍,希望对您有所帮助。
随着互联网的发展,大数据开发是一个比较不错的选择,未来的发展趋势是大数据人工智能,而大数据开发有两个发展方向:一是大数据平台开发,二是大数据应用开发。由于大数据所需要的技术知识比较复杂,想要自学大数据是比较困难的。
其实,零基础小伙伴想学习大数据开发技术,大数据培训是一个比较不错的选择,当然了,小伙伴可以根据自身的基础条件来选择适合自己的学习方式,小伙伴想要自学大数据开发,好的学习路线是必不可少的。
1.学习大数据相关基础知识
学习大数据开发对于零基础小伙伴来讲,在初级阶段肯定是要积累基础知识学习的,学习大数据开发技术知识,需要j***a、Python等编程语言基础,着几种编程语言都是比较容易入门的。
小伙伴通过什么方式学习基础知识呢?小伙伴可以通过大数据***的搜索来获取相关***进行学习,为什么不推荐看书学习呢?在书本上只是学习到了相关的知识结构,并没有大数据***讲的细致,而且还能做到交叉知识点的讲解。
2.学习相关大数据开发知识
小伙伴学习入门了编程基础,接下来的阶段是相关大数据开发平台的知识学习,建议小伙伴可以从Hadoop和Spark开始学起,这两个平台的应用是比较广泛的。在学习大数据开发过程中,小伙伴还需要了解Linux系统的学习,企业对大数据开发人员的要求是熟练掌握Linux系统。
3.项目实战的练习
小伙伴在学习大数据开发过程中,不能只学习基础知识,更重要的是项目实战案例的练习,小伙伴可以通过项目实战来深入理解大数据开发技术知识。
大数据是一个比较复杂的编程学科,不仅需要有编程基础,还需要有较强的思维逻辑能力能力,是比较适合理工科学习的一项编程技术,当然也并不是说理工科外的小伙伴不能学,两者的差距是接受能力的强弱。尚硅谷大数据培训是全程面授教学,以理论实践相结合的教学方式传授大数据开发技术知识,让小伙伴在学习大数据开发技术知识的同时,积累更多的项目实战经验。
大数据可以自学,有J***a开发经验的童鞋可以挑战一下。大数据主要学习三个平台Hadoop、Spark、Storm。不过因为大数据技术体系庞大复杂,不同的就业方向使用的技术差异也比较大,加之作为比较新的技术网上的学习***很少,自学难度大,零基础建议报班培训学习。
推荐书籍:
《Effective J***a中文版》
《Big Data》
《Hadoop权威指南》
《Hive编程指南》
《Learning Spark》
《Spark机器学习:核心技术与实践》
自学大数据可以学习哪些内容?有哪些书籍推荐?
随着互联网技术的发展,大数据行业前景非常被看好,有很多朋友对大数据行业心向往之,却苦于不知道该如何下手,或者说学习大数据不知道应该看些什么书。作为一个零基础大数据入门学习者该看哪些书?今天就给大家分享几本那些不容错过的大数据书籍。
1、《数据挖掘》
这是一本关于数据挖掘领域的综合概述,本书前版曾被KDnuggets的读者评选为最受欢迎的数据挖掘专著,是一本可读性极佳的教材。它从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和最新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。
2、《Big Data》
这是一本在大数据的背景下,描述关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题的书。这本书提供了令人耳目一新的全面解决方案。但不可忽略的是,它也引入了大多数开发者并不熟悉的、困扰传统架构的复杂性问题。本书将教你充分利用集群硬件优势的Lambda架构,以及专门用来捕获和分析网络规模数据的新工具,来创建这些系统。
3、《Mining of Massive Datasets》
这是一本书是关于数据挖掘的。但是本书主要关注极大规模数据的挖掘,也就是说这些数据大到无法在内存中存放。由于重点强调数据的规模,所以本书的例子大都来自Web本身或者Web上导出的数据。另外,本书从算法的角度来看待数据挖掘,即数据挖掘是将算法应用于数据,而不是使用数据来“训练”某种类型的机器学习引擎。
大数据新手入门的课程和书籍有什么推荐?
这个问题其实还是挺难回答的,结合个人的工作经验,说一下我自己的看法。上班族和大学生非常适合线上学习呢,推荐北京尚学堂,他家线上平台是百战程序员,教学质量和师资力量都挺好的。在我看来任何事情,任何工作都是基于兴趣的前提下,当然兴趣和学习谁先谁后,这是一个循序渐进的过程。第一:我们掌握了一些基本的知识,统计学是必不可少的,概率论等都是大数据的基础,大数据的本职是发现潜在的事物规律,因此统计学是一个再好不过的学科,通过样本来逼进总体,从而发现内在的规律,指导我们业务工作。第二:工具类,我们有基础的知识,但是我们还需要工具,工具是我们处理数据的利器。所以,我们需要掌握一些常用的工具,例如Excel、R、SQL等相关的语言。第三、兴趣,永远保持兴趣,是一项工作取得成就的前提,能不能在大数据上深入的更深一些,需要我们拥有良好心态和积极主动的探索的精神。最后,大数据是一个很大的概念,或者说涉及到的职业比较多,需要我们做好提前的判断,未来自己到底适应哪种职业,才能取得更好的成绩,如果掌握大数据技术,系统学习才是王道,那就来北京尚学堂吧,线上品牌是百战程序员。
我是专业做数据分析的,每天都要对全国的大数据进行分析。
个人觉得,数据分析最重要的是逻辑,而不是各种技术。所谓的逻辑就是你能够从繁琐复杂的各种标签中间整理出一个可以用于指导业务发展的模型。
然后在这个模型的基础上,通过大数据实时更新,形成某种预判机制,在别人还没有反应过来的同时,我们就已经抢得了商机,创造了利润。
说的比较抽象,你可以看一下我相关发布的文章,里面就有大数据的应用。
可以去大数据的公司上班或者培训就能更好的学习,首先你先了解大数据是什么,自己的方向是什么。
整体了解数据分析师
新人们被大数据,人工智能,21世纪是数据分析师的时代,立志成为一名数据分析师。数据分析到底是干什么的?数据分析都包含什么内容。
在开始前期呢 建议先看 一下 市面上讲数据分析内容的书籍,比如《大数据时代》《互联网+大数据》的一些基础的知识书籍,另外最好的是能找到外国人编写的 因为讲得比较全面 一点。但对于新人们还是有作用的,重点了解数据分析的流程,应用场景,以及书中提到的若干数据分析工具,5—6个小时,足够你对数据分析的了解与认识了。
了解统计学的知识
15—20个小时 进入了解一下统计学知识,作为入门就足够,但你要知道,今后随着工作内容的深入,需要学习更多统计知识。
要了解常用数理统计模型,重点放在学习模型的工作原理,输入内容和输出内容,至于具体的数学推导,学不会可暂放一边,需要用的时候再回来看。
学习初级工具
首先得有j***a基础,因为hadoop生态组件全部用j***a编写,j***a的书建议学习《疯狂j***a》,大数据建议先看两本《hadoop权威指南第四版》和《spark快速大数据分析》,hadoop擅长离线计算,spark擅长在线计算(离线计算也能处理)
目前大数据的技术体系已经非常庞大了,初学者要根据自己的发展规划来制定学习规划,入门大数据的方式也要结合自己的知识基础。
对于要进入IT互联网行业从事大数据开发岗位的同学来说,入门大数据可以先从编程语言开始,接着学习大数据平台知识,然后结合大数据平台来完成场景开发实践。在编程语言的选择上,可以重点考虑一下J***a语言,相对于其他编程语言来说,目前J***a岗位的人才需求量相对大一些。
对于要从事算法岗的同学来说,入门大数据也可以分成三个阶段,第一个阶段是编程语言的学习,第二个阶段是学习算法基础,这个阶段需要学习一下统计学、机器学习相关知识,为后续奠定一个基础,第三个阶段是结合场景来开展算法实践,这个阶段也需要掌握大数据平台的相关知识。
如果仅仅想通过学习大数据技术来提升自己的数据力,本身并没有从事大数据岗位的想法,那么入门大数据可以从学习Python语言开始,然后进一步学习基于Python语言来完成数据分析,这个过程同样要考虑到应用场景的问题,可以跟自己的专业方向相结合。
从整个大数据的技术体系结构来看,大数据技术涉及到数据***集、整理、存储、分析、呈现、应用和安全等领域,这些领域都可以***用单独学习的方式,比如既可以从数据***集开始学起,也可以从数据分析开始学起,但是不论从哪个领域开始学起,一定要重视与场景相结合,不能脱离场景来学习大数据技术。
最后,如果有学习大数据相关的问题,可以向我发起咨询。
到此,以上就是小编对于2022电脑最使用的脚本的问题就介绍到这了,希望介绍关于2022电脑最使用的脚本的2点解答对大家有用。